Space Robotics State of the Art/Future Capabilities Assessment

August, 2001

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
 - Mars Exploration Scenario
 - In-Space Assembly Scenario
 - Projections and Breakthroughs
- Open Questions, Schedule and Future Work

Ideal Process

Space Robotics assessment and prediction

Planetary Exploration

Mobility

Autonomy

Mechanism

Science Operations

Science Perception, Planning and Execution

Sample handling and manipulation

...

In-space Assembly, inspection and Maintenance

. . .

Human and Robot Exploration

- Human/Robot Working Group of the NEXT (formerly Decadal Planning Team) is chartered with determining the optimal split between human and robot space exploration
- Several studies are being funded
- Assessment of space robotic state-of-the-art and projections
 - Knowledge capture from human space explorers
 - Assessment of EVA technology state-of-the-art and projections
 - Assessment of human centered computing state-of-the-art and projections
 - Experimental tests of human vs. robot performance
 - All studies will be combined into integrated report to the OMB

Ideal outcome of our study

Products:

- Briefing package that can be used to communicate current and expected space robotic capabilities.
- Roadmaps for technology investment required to achieve these capabilities.
- Written report detailing the results of the study.

Desired impact:

- Begin forming a community focusing on the issue of joint human/robotic exploration.
- Generate increased advocacy within the agency for both robotic capabilities and the benefit of joint human/robotic interaction.
- A few "good ideas" regarding technology demonstration missions that can garner support within the agency.

Benefit to Space Robotics Technologists

- "Snapshot" of where we are as a community
- Set of metrics with which to rate accomplishments
 - Community cooperation to build metrics
- Identification and explanation of key capabilities necessary for space robotics
- Identification of NASA space robotic needs

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
 - Mars Exploration Scenario
 - In-Space Assembly Scenario
 - Projections and Breakthroughs
- Open Questions, Schedule and Future Work

Methodology

- How do we measure space robotic capabilities?
 - What is important?
 - Functionalities, e.g., mobility
 - How do you measure it?
 - Qualitative metrics, e.g., terrain capability
 - Quantitative metrics, e.g., distance traveled
- What is the state of the art?
 - Fielded robotic systems, e.g., Sojourner, Nomad
 - Laboratory demonstrations
- What is the future?
 - Projections, bottlenecks and roadmaps

Community input

- Site visits and interviews
- Written contributions
- Workshop in FY02

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
 - Mars Exploration Scenario
 - In-Space Assembly Scenario
 - Projections and Breakthroughs
- Open Questions, Schedule and Future Work

Mission Scenarios

Work **Operations**

In-Space Assembly, Inspection, and Maintenance

Inspection

Pre-planned maintenance

Assembly of large structures

Troubleshoot and repair

Planetary Surface Exploration

Long range reconnaisance

In depth site survey

Sample acquisition and analysis

Joint Human/Robotic

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
 - Mars Exploration Scenario
 - In-Space Assembly Scenario
 - Projections and Breakthroughs
- Open Questions, Schedule and Future Work

Space Robotic Functionalities

- Derived from mission scenario requirements
- Provide means for organizing and evaluating various robotic technologies
- Deliberately limited:
 - Space robotics, not robotics
 - Two mission scenarios
- Motivated by existing space robotics research

Mars Surface Exploration Functionalities

Mobility

Mobility Autonomy

Terrain assessment, path
planning, visual servoing

Mobility Mechanism
Extreme terrain access,
energy efficiency

Science Operations

Perception, Planning, Execution
On-board and ground tools;
data analysis, target selection,
operations planning and
execution

Sample Manipulation
Position sensors, collect and process samples

Multi-Agent Interaction

Robot-Robot Interaction
Communication, architecture,
distributed and coordinated
tasks

Human-Robot Interaction

Tele-operation to human supervision; robot/EVA astronaut teams

In-Space Assembly, Inspection, and Maintenance Functionalities

Manipulation

Mobility and Gross Manipulation Move self and other massive elements; path planning, coverage patterns

Fine Manipulation

Manipulate small objects and tools; hand-eye coordination; fine motion planning

Higher-Level Autonomy

Planning and Execution
On-board and ground tools;
architecture; task planning;
reacting to unexpected events

Multi-Agent Interaction

Robot-Robot Interaction
Communication, architecture,
distributed and coordinated
tasks

Human-Robot Interaction

Tele-operation to human supervision; robot/EVA astronaut teams

Metrics

Capability measures

- Qualitative Scaling
 - Precise definitions
 - Generalize to many systems
- Quantitative Measures
 - Resist temptation to use many easy to measure but uninformative numbers
 - Cannot be reported for some fielded systems, but will hopefully "set the bar" for future reporting of results

What is the current state-of-art?

- Evaluate *relevant* systems according to metrics
 - Related to scenarios
 - Path to space deployment
 - *Not* interested in a historical retrospective
 - Space readiness metrics
 - Defines how close a robotic system is to being deployed in a space environment
 - Size, mass, power, computing, etc.
- Infer performance envelope

Future Forecast

- State-of-Art in +5, +10 years, Fielded or not possible in 20 years.
- Range of projections
 - Minimal support
 - Strong support
- Use metrics
- Identify capabilities which require breakthroughs, but do *not* forecast when or how each breakthrough will occur

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
- Mars Exploration Scenario
 - In-Space Assembly Scenario
 - Projections and Breakthroughs
 - Open Questions, Schedule and Future Work

Mars Surface Exploration Scenario

Robotic Science

Surface Reconnaissance

Human Exploration Assistance

Increasing infrastructure →

Surface Mobility Autonomy and Mobility Mechanism

Mobility Autonomy:

- Self localization
- Goal location
- Path and motion planning
- Obstacle avoidance

Mobility Mechanism:

- Physical implementation of the mobility system
- Wheels, legs, tracks or other mechanisms to move robot over terrain

Surface Mobility Metrics

Distance traveled between interventions in dense-obstacle terrain

Surface Mobility State-of-Art

Surface Mobility Relevant Systems

Hyperion

Health monitoring

Long traverses

Path planning

Sample-Return Rover (SRR)

Mechanical reconfiguration

Model-registration localization

Rendezvous with lander

Dante II

Extreme slope access

Gait planning

Other Systems

- Sojourner
- MER 2003
- Rocky 7
- Nomad
- Mars Autonomy Project
- Urban Reconnaissance Robot
- And more...

Example Space Readiness Metrics Table

Relevant Systems

Rocky 1 Puton Navigation Normal Servoing 3 3 3 3 2 2 2 2

Space Readiness Metrics

Mass and Size **Power** Computing **Test Conditions** Reliability **Space Qualified**

0	3	3	3	2
1	2	2	2	2
1	2	2	0	1
2	2	2	2	1
?	?	1	?	?
0	2	2	2	0

Example Qualitative Metrics Table

Relevant Systems

Qualitative Metrics

Localization **Terrain Assessment** Mapping **Obstacle Avoidance Path Planning Visual Servoing**

1	1	1	1	1-3	1-3	3-4	3-4
1	0	1	0	1-2	1-2	2-4	2-4
3	0	3	1	2-3	2-3	2-4	2-4
3	0	3	1	2-3	2-3	2-4	2-4
3	0	3	0	0-3	0-3	2-4	2-4
0	2	0	0	0-2	0-2	2-4	2-4

Surface Mobility State-of-Art

Surface Mobility Projections

10 year Surface Mobility Claims

Terrain capability (mobility mechanism)

With minimal support:

- Sojourner-like mechanisms, increased mobility from larger size.
- 100 m between uplinks.

With strong support:

- Traversal of streambeds and craters.
- Tethered cliff explorers.
- 1 km between uplinks, 1000 km total.

Breakthrough: Advanced legged or hopping systems (no "robotic mountain goat")

Visual servoing (mobility autonomy)

With minimal support:

• Robust servoing to a target in view, with simple obstacle avoidance.

With strong support:

- Servoing to multiple widely separated targets in a single uplink
- Re-acquisition of lost targets

Surface Science Perception, Planning and Execution

- Locate scientifically interesting targets and make relevant observations.
- Plan science tasks to be performed, taking into account constraints on the robots resources and the value of different science observations.
- Executing the plan using the robot and its instruments to collect relevant science data. Monitoring the state of the robot and its environment and reacting to changes.

Science Perception, Planning and Execution METRICS

Science Perception, Planning and Execution: State-of-Art

Science Perception, Planning & Execution Relevant Systems

Nomad 2000

Autonomous meteorite identification

Selects targets

VIZ

Virtual environment for scientific visualization

Ground planning tool for scientists

DS1 / Remote Agent

Onboard planning, scheduling and execution of space-craft operations

Multiple goals; constraints between them, flexible duration.

Other Systems

- MER 2003 (WITS)
- GSOM software tools
- APGEN
- And more...

Science Perception, Planning and Execution: Forecasts

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
 - Mars Exploration Scenario
- In-Space Assembly Scenario
 - Projections and Breakthroughs
 - Open Questions, Schedule and Future Work

Space Assembly, Inspection and Maintenance Scenario

Inspection

Pre-planned maintenance

Assembly of large structures and troubleshooting

Decreasing human presence?

Increasing task complexity →

In-Space Mobility and Gross Manipulation Relevant Systems

AERCam Sprint

Freeflyer

Tele-operated w/auto stop rotate

Carried two cameras

Skyworker

Transport of objects

Motion planning

Low-energy climb on structure

Shuttle RMS

Tele-operated

Requires special connectors

No mobility (although SSRMS has some mobility)

Other Systems

- AERCam IGD
- ASAL
- ETS-VII
- Scamp
- And more...

In-Space Fine Manipulation

- Grasping objects and acting on them by turning, pushing, pulling, moving or mating.
- This consists of:
 - Mechanical device (actuator)
 - Sensing required to locate, grasp and manipulate
 - Control of the actuator

In-Space Fine Manipulation Metrics

In-Space Fine Manipulation State-of-Art

In-Space Fine Manipulation Relevant Systems

Robonaut

High DOF grippers

Compliant grip

Telepresence interface

Skyworker

Autonomous visual assembly

Motion planning

Low-energy climb on structure

Japanese Experimental Module RMS

Combines gross and fine manipulation

Performs science experiments in vacuum

Other Systems

- Special Purpose Dexterous Manipulator (SPDM)
- EVA Helper Retriever
- Ranger
- ROTEX
- And more...

Fine Manipulation

- Qualitative Metrics
 - Autonomy
 - Grasping
 - Manipulating grasped objects
 - Compliance control
 - Trajectory planning
- Quantitative Metrics
 - Degrees of freedom
 - Control rate
 - Energy consumption
 - Minimal graspable object
- Relevant robotic systems
 - Robonaut, Ranger, JEMRMS, SPDM, EVAHR, ROTEX

In-Space Fine Manipulation Claims

Gripping mechanism

- With minimal support: Space ready Robonaut hand
- With strong support:
 Ability to use many suited astronaut tools under teleoperation
- Breakthrough: Naked human hand performance under tele-operation. Suited human hand performance under autonomous control.

Motion planning

- With minimal support: Motion planning for simple assembly peg-inhole tasks.
- With strong support:
 Operations with complex constraints on gripping and object motion (e.g., turn a nut)
- *Breakthrough*: General-purpose autonomous manipulation of free-form objects like blankets and cables

In-Space Mobility and Gross Manipulation

Ability of a robot to move or apply forces to itself and other relatively massive elements.

- Localization, planning and obstacle avoidance
- Efficient locomotion in free-fall:
 - Minimal energy and Δv
 - Minimal torques and forces
- Load transport
- Manipulating large / unwieldy payloads

In-Space Mobility and Gross Manipulation Metrics

In-Space Mobility and Gross Manipulation State-of-Art

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
 - Mars Exploration Scenario
 - In-Space Assembly Scenario
 - Projections and Breakthroughs
- Open Questions, Schedule and Future Work

Estimated time capability can be flight-ready, with strong support

0-5 years

5-10 years

Breakthroughs

Mobility

100 m autonomous navigation; visual localization

km scale autonomy; reach several targets per uplink

Autonomous climbing; navigating in confined spaces

Access slopes and streambeds

Deploy tethered cliff explorers

Advanced legged "mountain goat" robots

Science Operations

Pick up rocks; onboard target selection

Break off rock fragments; on-board data processing

Position microscopes; autonomous site characterization

Robot-Robot Interaction

Coordinated sensing; sample handoff

Coordinated assembly and object transport

Dynamic team formation; on-board planning for multiple robots

Estimated time capability can be flight-ready, with NASA investment

0-5 years

5-10 years

Breakthroughs

Mobility and Gross Manipulation

Basic motion and object transport

Climbing on flexible structure; energy-efficient transport

Autonomous coverage patterns; replanning for dynamic obstacles

Fine Manipulation

Grip a variety of objects; simple autonomous mating

Tactile feedback; compliant objects; complex motion planning

Autonomous manipulation of free-form objects like cables

Human-Robot Interaction

Telepresent interfaces; simple voice commands

Gesture recognition; coordinated manipulation with EVA astronaut

Recognition of human goals; high-level dialogue with humans

Outline

- Overview/Motivation
- Approach
- Mission Scenarios
- Functionalities
 - Mars Exploration Scenario
 - In-Space Assembly Scenario
 - Projections and Breakthroughs
- Open Questions, Schedule and Future Work

Defining Challenges?

- Short Term Challenges
 - Minimal investment insufficient
 - Strong investments achieve desired performance
- Breakthrough Challenges
 - Fundamental breakthroughs needed
- Need:
 - Minimal investment and Strong investment forecasts
 - Mission scenario desired performance levels

Mission scenario desired performance levels

- Touchy subject
- Categories:
 - Mission enabling
 - Mission enhancing (do more without significant cost increase)
 - [Cost cutting]
- 2002 Workshop

Challenges

Short-term challenge:

Breakthrough challenge:

Contributors and Schedule

Schedule/Milestones (1)

CMU Kick-off meeting and site visit	April 25-26, 2001	DONE
JSC site visit	May 3-4, 2001	DONE
Initial contributor solicitations	June 15, 2001	DONE
I-SAIRAS Conference	June 18-21, 2001	DONE
MD Robotics visit		
JPL site visit	June 22, 2001	DONE

Schedule/Milestones (2)

Maryland SSL, Goddard, NRL and NASA HQ site visit	July, 2001
MIT / Boston site visit	August/September 2001
Brief to CMU	August/September 2001
Interim Report	November/December, 2001

Space Robotics Assessment FY02

Projections

- Based on same functionalities and metrics as the state-of-the-art assessment
- Look for trends in functionality metrics and create performance claims for each functionality
- Identify requirements for each mission scenario
- Identify key challenges necessary to perform mission scenarios and develop roadmaps

Workshop

- Space robotics roadmap
- Consolidate community acceptance of report
- Produce video survey of the state-of-the-art in space robotics

Primary Authors

• Liam Pedersen NASA ARC

David Kortenkamp NASA JSC

Illah Nourbakhsh CMU

• Trey Smith CMU

• Dan Clancy NASA ARC

Contributors (1/2)

Carnegie Mellon University

Red Whittaker, Reid Simmons, Dave Wettergreen, Hans Moravec, Matt Mason, Dimi Apostolopoulos, Sebastian Thrun, Sanjiv Singh, Peter Staritz

NASA JSC

Robert Burridge, Rob Ambrose, Jen Rochlis, Chris Lovchik, Kim Shillcutt

Stanford University

Steve Rock

NASA ARC

John Bresina, Rich Washington, Larry Edwards

Contributors (2/2)

NASA HQ

Dave Lavery, Joe Parrish

University of Maryland SSL

Dave Aiken

Jet Propulsion Laboratory

Chuck Weisbin, Guillermo Rodriguez, Paul Schenker, Rich Volpe, Brian Wilcox

MIT?

NRL?

McGill University

Martin Buehler